Multiple Reflection Symmetry Detection via Linear-Directional Kernel Density Estimation
نویسندگان
چکیده
Symmetry is an important composition feature by investigating similar sides inside an image plane. It has a crucial effect to recognize man-made or nature objects within the universe. Recent symmetry detection approaches used a smoothing kernel over different voting maps in the polar coordinate system to detect symmetry peaks, which split the regions of symmetry axis candidates in inefficient way. We propose a reliable voting representation based on weighted linear-directional kernel density estimation, to detect multiple symmetries over challenging real-world and synthetic images. Experimental evaluation on two public datasets demonstrates the superior performance of the proposed algorithm to detect global symmetry axes respect to the major image shapes.
منابع مشابه
Kernel density estimation for directional-linear data
A nonparametric kernel density estimator for directional–linear data is introduced. The proposal is based on a product kernel accounting for the different nature of both (directional and linear) components of the random vector. Expressions for bias, variance and mean integrated square error (MISE) are derived, jointly with an asymptotic normality result for the proposed estimator. For some part...
متن کاملReflection Invariant and Symmetry Detection
Symmetry detection and discrimination are of fundamental meaning in science, technology, and engineering. This paper introduces reflection invariants and defines the directional moment to detect symmetry for shape analysis and object recognition. And it demonstrates that detection of reflection symmetry can be done in a simple way by solving a trigonometric system derived from the directional m...
متن کاملSimple boundary correction for kernel density estimation
If a probability density function has bounded support, kernel density estimates often overspill the boundaries and are consequently especially biased at and near these edges. In this paper, we consider the alleviation of this boundary problem. A simple unified framework is provided which covers a number of straightforward methods and allows for their comparison: 'generalized jackknifing' genera...
متن کاملTransfer Entropy Estimation and Directional Coupling Change Detection in Biomedical Time Series
BACKGROUND The detection of change in magnitude of directional coupling between two non-linear time series is a common subject of interest in the biomedical domain, including studies involving the respiratory chemoreflex system. Although transfer entropy is a useful tool in this avenue, no study to date has investigated how different transfer entropy estimation methods perform in typical biomed...
متن کاملClassification via kernel product estimators
Multivariate kernel density estimation is often used as the basis for a nonparametric classification technique. However, the multivariate kernel classifier suffers from the curse of dimensionality, requiring inordinately large sample sizes to achieve a reasonable degree of accuracy in high dimensional settings. A variance stabilising approach to kernel classification can be motivated through an...
متن کامل